

安藤研究室

マイクロ/ナノトライボロジー

ナノストライプ表面
凝着力
AFM(原子間力顕微鏡)
マイクロ/ナノ表面パターニング
分子動力学計算
流体計算

3次元マイクロステージ AFM組み込みMEMSサンプル フォトリソグラフィー 結晶異方性エッチング DRIE (deep reactive ion etching) 集束イオンビーム

新しい分野創出を目指す2つの研究分野

研究テーマの例

Ando, Y., Miyake, K., Mizuno, A., Korenaga, A., Nakano, M., Mano, H.: Fabrication of nanostripe surface structure by multilayer film deposition combined with micropatterning. Nanotechnology. 21, 095304 (2010). https://doi.org/10.1088/0957-4484/21/9/095304

ナノストライプの潤滑特性(1)

Tribology MEMS /Microfabrication Technology

Disk rotating friction tester

実験に用いた4種類のナノストライプ構造

Ando, Y., Sumiya, T.: Friction properties of micro/nanogroove patterns in lubricating conditions. Tribol. Int. 151, 106428 (2020). https://doi.org/10.1016/j.triboint.2020.106428

ナノストライプの潤滑特性(2)

Hayashi, M., Ando, Y.: Friction characteristics between two nanostripe surfaces. Tribol. Int. 136, 165–172 (2019). https://doi.org/10.1016/j.triboint.2019.03.046

(a) formation of random dents and asperities by shot blasting, (b) formation of multilayer films,(c) polishing of surface, and (d) generation of contoured groove/ridge pattern.

Ag-coated surfaces showed unstable friction coefficient

CNS surface showed lowest friction coefficient

CNS-D substrates observed after friction tests. Nanoscale ridges remained in the wear scar

Ando, Y., Imai, H., Ito, H.: Fabrication and Lubrication Properties of Contoured Nanostripe Surfaces. Tribol. Lett. 63, (2016). https://doi.org/10.1007/s11249-016-0703-x

Wear scar depths (symbols) and wear rate (bars)

Ando, Y., Abe, S.: Friction and wear properties of nanostripe-inducing structures in vacuum environment. Wear. 424–425, 62–69 (2019). https://doi.org/10.1016/j.wear.2018.11.008

原子間隔差が摩擦係数に及ぼす影響

Test pieces were heated to remove moisture on the surface before measurements

Friction coefficients measured in high vacuum

Difference in interatomic distance (Å)

Lager difference in interatomic distance showed lower friction coefficient

Ando, Y., Tamura, Y., Takahashi, H., Hiratsuka, K.: Experimental studies on revealing a dominant factor in friction coefficient between different metals under low load conditions. Tribol. Lett. 47, 43–49 (2012). https://doi.org/10.1007/s11249-012-9960-5

Fabricating nanoscale asperity arrays to control friction and adhesion force

SEM image of scanning probe for AFM measurement

Friction and adhesion forces are reduced by applying periodic asperity array

Ando, Y., Ino, J.: Friction and pull-off forces on submicron-size asperities. Wear. 216, 115–122 (1998). https://doi.org/10.1016/S0043-1648(97)00158-0

3次元マクロステージ

Inclined leaf springs in suspensions enable displacement in z-direction

AFM image captured using 3D-microstage as scanning device

Ando, Y., Ikehara, T., Matsumoto, S.: Development of three-dimensional microstages using inclined deep-reactive ion etching. J. Microelectromechanical Syst. 16, (2007). https://doi.org/10.1109/JMEMS.2006.885848

マイクロ水平力センサ

Using tunneling current to detect the displacement of force-sensing stage

LFM image obtained using MLFS

SEM image of whole device and tunneling gap

Ando, Y., Shiraishi, N.: Development of a microlateral force sensor and its evaluation using lateral force microscopy. Rev. Sci. Instrum. 78, 033701 (2007). https://doi.org/10.1063/1.2714038

カンチレバー一体型µステージ

Micro/Nano Tribology MEMS /Microfabrication Technology

AFMカンチレバーが基板に直接固定されている

温度変化に対して荷重や位置制御が影響を受けない

CI-3D-microstageで測定した摩擦力

フォースカーブ測定がヒステリシスの影響を受けない

代表的な研究設備

超高真空マイクロトライボロジー試験機

Specifications

Pressure: 10^{-7} Pa (Min.) Force resolution: ~0.1 μ N Pull-off force measurement is possible Sample heating in vacuum Sliding stroke: 0.3 mm (Max.) Installed on Active vibration isolator

Samples can be changed and rotated in HV

高真空AFM (atomic force microscope)

Specifications

Pressure: 10⁻⁵Pa (min.) Substrate temperature: -60 to 300 °C (800 °C) Current distribution: max. bias voltage of 100V Pull-off force distribution: adjustable contact period DFM, LM-LFM, LFM, etc.

高真空中で測定された引き離し力分布(接触時間 を0~1秒の間で調整できるように改修)

Nanosurf CoreAFM

Hitachi High-Tech Science AFM5010

Lasertec Corp. Optics Hybrid

Technex Lab Co. Tiny SEM

Fabrication facilities

RFスパッタ成膜装置

電気炉

両面マスクアライナ 4インチウェハ対応

小型スパッタ成膜装置

ダイシングソー